\begin{tabbing} Konig($k$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=$\forall$${\it tree}$:(($n$:$\mathbb{N}$ $\times$ (\{0..$n$$^{-}$\}$\rightarrow$\{0..$k$$^{-}$\}))$\rightarrow\mathbb{B}$).\+ \\[0ex]($\forall$$i$:$\mathbb{N}$, $j$:$\mathbb{N}$. \\[0ex]($i$ $\leq$ $j$) $\Rightarrow$ ($\forall$$x$:(\{0..$j$$^{-}$\}$\rightarrow$\{0..$k$$^{-}$\}). ($\uparrow$(${\it tree}$($<$$j$, $x$$>$))) $\Rightarrow$ ($\uparrow$(${\it tree}$($<$$i$, $x$$>$))))) \\[0ex]$\Rightarrow$ ($\neg$($\exists$$b$:$\mathbb{N}$. ($\forall$$x$:(\{0..$b$$^{-}$\}$\rightarrow$\{0..$k$$^{-}$\}). $\neg$($\uparrow$(${\it tree}$($<$$b$, $x$$>$)))))) \\[0ex]$\Rightarrow$ ($\exists$$s$:$\mathbb{N}\rightarrow$\{0..$k$$^{-}$\}. ($\forall$$n$:$\mathbb{N}$. $\uparrow$(${\it tree}$($<$$n$, $s$$>$)))) \- \end{tabbing}